You are here

Project Harald Garcke and Günther Grün

Diffuse interface models for transport processes at fluidic interfaces

Abstract: Topological transitions like droplet coalescence or droplet break-up are fundamental features of two-phase flows. In recent years, diffuse interface models turned out to be a promising approach to describe such phenomena. Species transport across fluidic interfaces and the effects exerted by soluble and insoluble surfactants are additional issues of still increasing technological importance. For those phenomena, novel thermodynamically consistent diffuse interface models shall be developed taking in particular general mass densities into account. Based on rigorous mathematical analysis, existence and qualitative behaviour of solutions will be investigated, this way enhancing the understanding of the fundamental model properties. Starting from energy and entropy inequalities, stable and convergent numerical schemes shall be formulated and implemented in two and three spatial dimensions. By numerical simulations, the models shall be validated and further improved.


Researchers:
Daniel Depner, Regensburg
Fabian Klingbeil, Erlangen